Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells.
نویسندگان
چکیده
Nutrient-stimulated insulin secretion is dependent upon the generation of metabolic coupling factors in the mitochondria of the pancreatic B cell. To investigate the role of Ca2+ in mitochondrial function, insulin secretion from INS-1 cells stably expressing the Ca2+-sensitive photoprotein aequorin in the appropriate compartments was correlated with changes in cytosolic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]m). Glucose and KCl, which depolarize the cell membrane, as well as the Ca2+-mobilizing agonist, carbachol (CCh), cause substantial increases in [Ca2+]m which are associated with smaller rises in [Ca2+]c. The L-type Ca2+-channel blocker, SR7037, abolished the effects of glucose and KCl while attenuating the CCh response. Glucose-induced increases in [Ca2+]m, [Ca2+]c, and insulin secretion all demonstrate a pronounced initial peak followed by a sustained plateau. All three parameters are increased synergistically when glucose and CCh are combined. Finally, [Ca2+]m, [Ca2+]c, and insulin secretion also display desensitization phenomena following repeated additions of the three stimuli. The high sensitivity of [Ca2+]m to Ca2+ influx and the desensitization-resensitization effects can be explained by a model in which the mitochondria of INS-1 cells are strategically located to sense Ca2+ influx through plasma membrane Ca2+ channels. In conclusion, the correlation of [Ca2+]m and [Ca2+]c with insulin secretion may indicate a fundamental role for Ca2+ in the adaptation of oxidative metabolism to the generation of metabolic coupling factors and the energy requirements of exocytosis.
منابع مشابه
Secretagogues modulate the calcium concentration in the endoplasmic reticulum of insulin-secreting cells. Studies in aequorin-expressing intact and permeabilized ins-1 cells.
The precise regulation of the Ca2+ concentration in the endoplasmic reticulum ([Ca2+]er) is important for protein processing and signal transduction. In the pancreatic beta-cell, dysregulation of [Ca2+]er may cause impaired insulin secretion. The Ca2+-sensitive photoprotein aequorin mutated to lower its Ca2+ affinity was stably expressed in the endoplasmic reticulum (ER) of rat insulinoma INS-1...
متن کاملGlucose-stimulated Insulin Secretion Correlates with Changes in Mitochondrial and Cytosolic Ca
Nutrient-stimulated insulin secretion is dependent upon the generation of metabolic coupling factors in the mitochondria of the pancreatic B cell. To investigate the role of Ca 2 1 in mitochondrial function, insulin secretion from INS-1 cells stably expressing the Ca 2 1 -sensitive photoprotein aequorin in the appropriate compartments was correlated with changes in cytosolic calcium ([Ca 2 1 ] ...
متن کاملRole of mitochondrial calcium in metabolism-secretion coupling in nutrient-stimulated insulin release.
Glucose-stimulated insulin release from pancreatic beta cells involves a complex series of signalling pathways. In many forms of diabetes, lesions in this process cause or aggravate the diabetic phenotype. A common motif in these cascades is the elevation of intracellular Ca2+ both in the cytosolic compartment ([Ca2+]c) and within the mitochondria ([Ca2+]m). These parameters can be effectively ...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملMitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells.
In the pancreatic beta-cell, insulin secretion is stimulated by glucose metabolism resulting in membrane potential-dependent elevation of cytosolic Ca2+ ([Ca2+]c). This cascade involves the mitochondrial membrane potential (delta psi[m]) hyperpolarization and elevation of mitochondrial Ca2+ ([Ca2+]m) which activates the Ca(2+)-sensitive NADH-generating dehydrogenases. Metabolism-secretion coupl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 98 11 شماره
صفحات -
تاریخ انتشار 1996